Publications

# DENOTES UNDERGRADUATE COAUTHOR; * DENOTES CORRESPONDING AUTHOR(S); ‡ DENOTES EQUAL CONTRIBUTIONS
  1. Amphiphilic, phosphonic acid-capped cadmium selenide quantum dots sensitize a thiomolybdate catalyst for hydrogen production
    Kosko, R.‡; Wang, Q.‡#; Peter, C.Y.M.; Phinney, E.; Krauss, T.D.; Bren, K.L.*, Matson, E.M.*
    Chem. Commun., 2024, Accepted Article. DOI: 10.1039/D4CC03656E
    Amphiphilic, phosphonic acid-capped cadmium selenide quantum dots sensitize a thiomolybdate catalyst for hydrogen production
  2. Mass spectrometry provides insights into the structures of polyoxovanadate alkoxide clusters substituted with Fe and W heterometals
    Wilson, S.M.; Petel, B.E.; Maiola, M.L.; Forbes, D.; Matson, E.M.*; Laskin, J.
    Int. J. Mass Spectrom., 2024, 506, 117347. DOI: 10.1016/j.ijms.2024.117347
    Mass spectrometry provides insights into the structures of polyoxovanadate alkoxide clusters substituted with Fe and W heterometals
  3. Molecular models of atomically dispersed uranium at MoS2 surfaces reveal cooperative mechanism of water reduction
    Patra, K.; Brennessel, W. W.; Matson, E.M.*
    J. Am. Chem. Soc., 2024, 146, 20147-20157. DOI: 10.1021/jacs.4c05002
    Molecular models of atomically dispersed uranium at MoS2 surfaces reveal cooperative mechanism of water reduction
  4. Leveraging a reduced polyoxomolybdate-alkoxide cluster for the formation of a stable U(V) sandwich complex
    Shiels, D.*; Crawley, M.R.; Brennessel, W. W.; Matson, E.M.*
    Chem. Sci., 2024, 15, 11072-11083. DOI: 10.1039/D4SC02644F
    Leveraging a reduced polyoxomolybdate-alkoxide cluster for the formation of a stable U(V) sandwich complex
  5. O2 reduction via concerted-proton electron transfer by a V(III) aquo on a polyoxovanadate-alkoxide cluster
    Cooney, S.E.; Schreiber, E.; Ferrigno, B.M.; Matson, E.M.*
    Chem. Commun., 2024, 60, 5610-5613. DOI: 10.1039/D4CC01331J
    O<sub>2</sub> reduction via concerted-proton electron transfer by a V(III) aquo on a polyoxovanadate-alkoxide cluster
  6. Elucidation of Design Criteria for V-based Redox Mediators: Structure-Function Relationships that Dictate Rates of Heterogeneous Electron Transfer
    Dagar, M.; Brennessel, W.W.; Matson, E.M.*
    Chem. Eur. J., 2024, 32, Accepted Article. DOI: 10.1002/chem.202400764
    Elucidation of Design Criteria for V-based Redox Mediators: Structure-Function Relationships that Dictate Rates of Heterogeneous Electron Transfer
  7. Selective hydrogenation of azobenzene via proton coupled electron transfer from a polyoxotungstate surface
    Lu, Z.; Cooney, S.E.; McKone, J.R.*; Matson, E.M.*
    JACS Au, 2024, 4, 1310-1314. DOI: 10.1021/jacsau.4c00127
    Selective hydrogenation of azobenzene via proton coupled electron transfer from a polyoxotungstate surface
  8. Impact of Surface Ligand Identity and Density on the Thermodynamics of H-atom Uptake at Polyoxovanadate-alkoxide Surfaces
    Proe, K.R.; Towarnicky, A.; Fertig, A.A.; Lu, Z.; Mpourmpakis, G.*; Matson, E.M.*
    Inorg. Chem., 2024, 16, 7206-7217. DOI: 10.1021/acs.inorgchem.3c04435
    Impact of Surface Ligand Identity and Density on the Thermodynamics of H-atom Uptake at Polyoxovanadate-alkoxide Surfaces
  9. Synthesis and characterization of Th(IV) and U(IV) pyridine dipyrrolide complexes
    Valerio, L.R.; Leary, D.C.; Hakey, B.M.; Stockdale, E.#; Brennessel, W.W.; Milsmann, C.*; Matson, E.M.*
    Inorg. Chem., 2024, 21, 9610-9623 (Invited Article: Ligand-metal complementarity in rare earth and actinide chemistry). DOI: 10.1021/acs.inorgchem.3c04391
    Synthesis and characterization of Th(IV) and U(IV) pyridine dipyrrolide complexes
  10. Mechanism of proton coupled electron transfer at the surface of polyoxovanadate-alkoxide clusters altered via cationic dopants
    Cooney, S.E.; Walls, M.R.A.; Schreiber, E.; Brennessel, W.W.; Matson, E.M.*
    J. Am. Chem. Soc., 2024, 146, 2364-2369. DOI: 10.1021/jacs.3c14054
    Mechanism of proton coupled electron transfer at the surface of polyoxovanadate-alkoxide clusters altered via cationic dopants
  11. Potassium supporting electrolyte enhances stability of Ti-substituted polyoxovanadates for nonaqueous redox flow batteries
    Dagar, M.D.; Brennessel, W.W.; Matson, E.M.*
    J. Mater. Chem. A, 2024, 12, 1517-1529. DOI: 10.1039/D3TA06432H
    Potassium supporting electrolyte enhances stability of Ti-substituted polyoxovanadates for nonaqueous redox flow batteries
  12. Molybdenum Sulphide Clusters as Redox Active Supports for Low-Valent Uranium
    Patra, K; Brennessel, W.W.; Matson, E.M.*
    Chem. Commun., 2024, 60, 530-533 (selected by editor as "Hot Article" and featured on front cover of journal). DOI: 10.1039/D3CC05561B
    Molybdenum Sulphide Clusters as Redox Active Supports for Low-Valent Uranium
  13. Organic functionalization of titanium-doped polyoxovanadate clusters for improved energy density in symmetric non-aqueous redox flow batteries
    Dagar, M.D.; Dissanyake, M.D.; Kesler, D.N.#; Corr, M.#; McPherson, J.D.#; Brennessel, W.W.; McKone, J. R. Matson, E.M.*
    Dalton Trans., 2024, 53, 93-104. DOI: 10.1039/D3DT03642A
    Organic functionalization of titanium-doped polyoxovanadate clusters for improved energy density in symmetric non-aqueous redox flow batteries
  14. Efficient hold transfer from CdSe quantum dots enabled by oxygen-deficient polyoxovanadate-alkoxide clusters
    Cogan, N.M.B.‡; McClelland, K.P.‡; Peter, C.Y.M.‡; Carmenate, C.; Fertig, A.A.; Amin, M.; Brennessel, W.W.; Krauss, T.D.*; Matson, E.M.*
    Nano Letters, 2023, 22, 10221-10227. DOI: 10.1021/acs.nanolett.3c02749
    Efficient hold transfer from CdSe quantum dots enabled by oxygen-deficient polyoxovanadate-alkoxide clusters
  15. Manipulating ligand density at the surface of polyoxovanadate-alkoxide clusters
    Marinho, T. V. ‡#; Schreiber, E.‡; Garwick, R.E.; Brenessel, W.W.; Matson, E.M.*
    Inorg. Chem., 2023, 62, 15616-15626. DOI: 10.1021/acs.inorgchem.3c02314
    Manipulating ligand density at the surface of polyoxovanadate-alkoxide clusters
  16. Surface ligand length influences kinetics of H-atom uptake in polyoxovanadate-alkoxide clusters
    Peter, C. Y. M.; Schreiber, E.; Proe, K.R. Matson, E. M.*
    Dalton Trans., 2023, 52, 15775-15785. DOI: 10.1039/D3DT02074F
    Surface ligand length influences kinetics of H-atom uptake in polyoxovanadate-alkoxide clusters
  17. Acidity of carboxylic acid ligands influences the formation of nanocrystals under solvothermal conditions
    Beidelman, B. A.; Zhang, X.; Matson, E. M.; Knowles, K. E.*
    ACS Nanosci. Au, 2023, 5, 381-388. DOI: 10.1021/acsnanoscienceau.3c00014
    Acidity of carboxylic acid ligands influences the formation of nanocrystals under solvothermal conditions
  18. Proton-coupled electron transfer at the surface of polyoxovanadate-alkoxide clusters
    Proe, K. R.; Schreiber, E.; Matson E. M.*
    Acc. Chem. Res., 2023, 56, 1602-1612. DOI: 10.1021/acs.accounts.3c00166
    Proton-coupled electron transfer at the surface of polyoxovanadate-alkoxide clusters
  19. Solvent mixtures for improved electron transfer kinetics of heterometallic charge carriers in nonaqueous redox flow batteries
    Dagar, M.; Corr, M.#; Mckone, J. R.*; Matson, E. M.*
    J. Mater. Chem. A., 2023, 11, 13729-13741. DOI: 10.1039/D3TA01179H
    Solvent mixtures for improved electron transfer kinetics of heterometallic charge carriers in nonaqueous redox flow batteries
  20. Accelerated rates of proton coupled electron transfer to an oxygen deficient polyoxovanadate alkoxide cluster
    Cooney, S. E.‡; Schreiber, E.‡; Brennessel, W. W.; Matson, E. M.*
    Inorg. Chem. Front., 2023, 10, 2754-2765 (Invited Article: Inorg. Chem. Front. Emerging Investigators Special Issue). DOI: 10.1039/D3QI00129F
    Accelerated rates of proton coupled electron transfer to an oxygen deficient polyoxovanadate alkoxide cluster
  21. Molecular Engineering of Clusters and Coordination Cages
    Dagar, M. ‡, Schreiber, E. ‡; Cooney, S. E. ‡; Matson, E. M.*
    Inorg. Chem., 2023, 62, 1763-1765. DOI: 10.1021/acs.inorgchem.2c04431
    Molecular Engineering of Clusters and Coordination Cages
  22. Electrochemical and Structural Characterization of Soft Landed Tungsten-Substituted Lindqvist Polyoxovanadate-Alkoxides
    Wilson, S. M.; Petel, B. E.; Schreiber, E.; Maiola, M. L.#; Matson, E. M.*; Laskin, J.*
    Chem. Eur. J., 2023, 29, e202203440. DOI: 10.1002/chem.202203440
    Electrochemical and Structural Characterization of Soft Landed Tungsten-Substituted Lindqvist Polyoxovanadate-Alkoxides
  23. Regioselectivity of hydrogen-atom uptake at the surface of reduced polyoxovanadate clusters
    Schreiber, E.; Brennessel, W. W.; Matson, E. M.*
    Chem. Sci., 2023, 14, 1386-1396 (Selected by editor as “ChemSci Pick of the Week”). DOI: 10.1039/D2SC05928B
    Regioselectivity of hydrogen-atom uptake at the surface of reduced polyoxovanadate clusters
  24. Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate
    Cooney, S. E.; Fertig, A. A.*; Buisch, M.R.; Brennessel, W. W.; Matson, E. M.*
    Chem. Sci., 2022, 13, 12726-12737. DOI: 10.1039/D2SC04843D
    Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate
  25. Quantitative U=O bond activation via silyl radical transfer
    Valerio, L. R.; Hakey, B. D.; Brennessel, W. W.; Matson, E. M.*
    Chem. Commun., 2022, 58, 11244-11247. DOI: 10.1039/D2CC04424B
    Quantitative U=O bond activation via silyl radical transfer
  26. Connecting Thermodynamics and Kinetics of Proton Coupled Electron Transfer at Polyoxovanadate Surfaces using the Marcus Cross Relation
    Fertig, A. A.; Matson, E. M.*
    Inorg. Chem., 2022, 62, 1958-1967. DOI: 10.1021/acs.inorgchem.2c02541
    Connecting Thermodynamics and Kinetics of Proton Coupled Electron Transfer at Polyoxovanadate Surfaces using the Marcus Cross Relation
  27. Influence of water concentration on the solvothermal synthesis of VO2(B) nanocrystals
    Beidelman, B. A.; Zhang, X.#; Sanchez-Lievanos, K. R.; Selino, A. V. #; Matson, E. M.*; Knowles, K. E.
    Cryst. Eng. Commun., 2022, 24, 6008-6017. DOI: 10.1039/D2CE00813K
    Influence of water concentration on the solvothermal synthesis of VO<sub>2</sub>(B) nanocrystals
  28. Surface ligands influence the selectivity of cation uptake in polyoxovanadate–alkoxide clusters
    Garwick, R. E.; Schreiber, E.; Brennessel, W. W.; McKone, J. R.; Matson, E. M.*
    J. Mater. Chem. A, 2022, 10, 12070-12078 (Invited Article: In Memoriam of Susan Odom). DOI: 10.1039/D2TA01131J
    Surface ligands influence the selectivity of cation uptake in polyoxovanadate–alkoxide clusters
  29. Accelerated rates of oxygen-atom transfer in polyoxovanadate clusters
    Fertig, A. A.; Cooney, S. E.; Meyer, R. L.; Brennessel, W. W.; Matson, E. M.*
    Chem. Commun., 2022, 58, 6004-6007 (Invited Article: Pioneering Investigators Forum). DOI: 10.1039/D2CC01228F
    Accelerated rates of oxygen-atom transfer in polyoxovanadate clusters
  30. Synthesis and characterization of pyridine dipyrrolide uranyl complexes
    Hakey, B. M.; Leary, D.; Lopez, L. M. L.#; Valerio, L. R.; Brennessel, W. W.; Milsmann, C.*; Matson, E. M.*
    Inorg. Chem., 2022, 61, 6182-6192. DOI: 10.1021/acs.inorgchem.2c00348
    Synthesis and characterization of pyridine dipyrrolide uranyl complexes
  31. Hydrogen-atom uptake yields defect formation in polyoxovanadate clusters via concerted 2e-/2H+ transfer
    Schreiber, E.‡; Fertig, A. A.‡; Brennessel, W. W.; Matson, E. M.*
    J. Am. Chem. Soc., 2022, 144, 5029-5041. DOI: 10.1021/jacs.1c13432
    Hydrogen-atom uptake yields defect formation in polyoxovanadate clusters via concerted 2e<sup>-</sup>/2H<sup>+</sup> transfer
  32. Molecular engineering of polyoxovanadate-alkoxide clusters and microporous polymer membranes to prevent crossover in redox-flow batteries
    Schreiber, E.; Garwick, R. E.; Baran, M. J.; Baird, M. A.; Helms, B. A.*; Matson, E. M.*
    Appl. Mater. Interfaces, 2022, 14, 22965-22972 (Invited Article: Emerging Investigators Forum). DOI: 10.1021/acsami.1c23205
    Molecular engineering of polyoxovanadate-alkoxide clusters and microporous polymer membranes to prevent crossover in redox-flow batteries
  33. Charge-state dependence of proton uptake in polyoxovanadate-alkoxide clusters
    Schreiber, E.; Brennessel, W. W.; Matson, E. M.*
    Inorg. Chem., 2022, 61, 4789–4800. DOI: 10.1021/acs.inorgchem.1c02937
    Charge-state dependence of proton uptake in polyoxovanadate-alkoxide clusters
  34. Concerted multiproton-multielectron transfer for the reduction of O2 to H2O with a polyoxovanadate cluster
    Fertig, A. A.; Brennessel, W. W.; McKone, J.R.; Matson E. M.*
    J. Am. Chem. Soc., 2021, 143, 15756-15768. DOI: 10.1021/jacs.1c07076
    Concerted multiproton-multielectron transfer for the reduction of O<sub>2</sub> to H<sub>2</sub>O with a polyoxovanadate cluster
  35. Reductive silylation for defect formation in polyoxovanadate-alkoxide clusters
    Chakraborty, S.; Matson, E. M.*
    Inorg. Chem. Front., 2021, 8, 4507-4516 (Invited Article). DOI: 10.1039/D1QI00920F
    Reductive silylation for defect formation in polyoxovanadate-alkoxide clusters
  36. Modelling local structural and electronic consequences of proton- and hydrogen-uptake in VO2 with polyoxovanadate clusters
    Chakraborty, S.; Schreiber, E.; Sanchez-Lievanos, K. R.; Tariq, M.; Brennessel, W. W.; Knowles, K. E.; Matson, E. M.*
    Chem. Sci., 2021, 12, 12744-12753. DOI: 10.1039/D1SC02809J
    Modelling local structural and electronic consequences of proton- and hydrogen-uptake in VO2 with polyoxovanadate clusters
  37. O2 activation with a sterically-encumbered, oxygen-deficient polyoxovanadate-alkoxide cluster
    Meyer, R. L.; Miro, P.; Brennessel, W. W.; Matson, E. M.*
    Inorg. Chem., 2021, 60, 13833-1384 (Invited Article: Forum on Small Molecule Activation). DOI: 10.1021/acs.inorgchem.1c00887
    O<sub>2</sub> activation with a sterically-encumbered, oxygen-deficient polyoxovanadate-alkoxide cluster
  38. Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters
    Fertig, A. A.; Gulam Rabbani, S. M.; Koch, M. D.; Brennessel, W. W.; Miró, P.*; Matson, E. M.*
    Nanoscale, 2021, 13, 6162 - 6173 (Invited Article: Nanoscale Emerging Investigators). DOI: 10.1039/D0NR09201K
    Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters
  39. Development of sterically hindered siloxide-functionalized polyoxotungstates for the complexation of 5d-metals
    Auvray, T.; Nachtigall, O.; Brennessel, W. W.; Jones, W. D.; Matson, E. M.*
    Dalton Trans., 2021, 50, 4300-4310. DOI: 10.1039/D1DT00256B
    Development of sterically hindered siloxide-functionalized polyoxotungstates for the complexation of 5d-metals
  40. Atomically precise vanadium-oxide clusters
    Chakraborty, S.; Petel, B. E., Schreiber, E.; Matson, E. M.*
    Nanoscale Adv., 2021, 3, 1293-1318. DOI: 10.1039/D0NA00877J
    Atomically precise vanadium-oxide clusters
  41. Electrocatalytic multielectron nitrite reduction in water by an iron complex
    Stroka, J. R.; Kandemir, B.; Matson, E. M.*; Bren, K. L.*
    ACS Catal., 2020, 23, 13968–13972. DOI: 10.1021/acscatal.0c036000
    Electrocatalytic multielectron nitrite reduction in water by an iron complex
  42. Oxygen-atom Vacancy Formation and Reactivity in Polyoxovanadate Clusters
    Petel, B. E.*; Matson, E. M.*
    Chem. Commun., 2020, 56, 13477-13490 (Invited Article). DOI: 10.1039/D0CC05920J
    Oxygen-atom Vacancy Formation and Reactivity in Polyoxovanadate Clusters
  43. Polyoxometalate-based complexes as platforms for the study of actinide chemistry
    Auvray, T.*; Matson, E. M.*
    Dalton Trans., 2020, 49, 13917-13927 (selected by editor as "Hot Article"). DOI: 10.1039/D0DT02755C
    Polyoxometalate-based complexes as platforms for the study of actinide chemistry
  44. Characterizing polyoxovanadate-alkoxide clusters using vanadium K-edge X-ray absorption spectroscopy
    Meyer, R. L.; Greer, S. M.; Blake, A. V.; Cary, S. K.; Ditter, A. S.; Daly, S. R.; Li, F.; Kozimor, S. A.*; Matson, E. M.*; Mocko, V.; Seidler, G. T.; Stein, B. W.*; Weinstein, S. D.
    Chem. Eur. J., 2021, 5, 1592-1597. DOI: 10.1002/chem.202003625
    Characterizing polyoxovanadate-alkoxide clusters using vanadium K-edge X-ray absorption spectroscopy
  45. Physicochemical factors that influence the deoxygenation of oxyanions in atomically-precise, oxygen-deficient vanadium oxide assemblies
    Petel, B. E.; Matson, E. M.*
    Inorg. Chem., 2020, 60, 6855–6864. DOI: 10.1021/acs.inorgchem.0c02052
    Physicochemical factors that influence the deoxygenation of oxyanions in atomically-precise, oxygen-deficient vanadium oxide assemblies
  46. Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center
    Dissanyake, D. M. M. M.; Petel, B. E.; Brennessel, W. W.; Bren, K. L.*; Matson, E. M.*
    J. Coord. Chem., 2020, 73:17-19, 2664-2676 (Invited Article: Enbo Wang Memorial Issue). DOI: 10.1080/00958972.2020.182137
    Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center
  47. Enhancing the Activity of Photocatalytic Hydrogen Production from CdSe Quantum Dots with Polyoxovanadate Clusters
    Edwards, E. H.‡; Fertig, A. A.‡; McClelland, K. P.; Tilahun, M.; Chakraborty, S.; Krauss, T. D.*; Bren, K. L.*; Matson, E. M.*
    Chem. Commun., 2020, 56, 8762-8765. DOI: 10.1039/D0CC03163A
    Enhancing the Activity of Photocatalytic Hydrogen Production from CdSe Quantum Dots with Polyoxovanadate Clusters
  48. Conversion of a cyclic polyoxovanadate-alkoxide cluster to its Lindqvist congener: Insights into thermodynamic and kinetic products in polyoxovanadate clusters
    Meyer, R. L.; Love, R.#; Matson, E. M.*
    Chem. Commun., 2020, 56, 8607-8610. DOI: 10.1039/D0CC03464A
    Conversion of a cyclic polyoxovanadate-alkoxide cluster to its Lindqvist congener: Insights into thermodynamic and kinetic products in polyoxovanadate clusters
  49. Acid-induced, oxygen-atom vacancy formation in reduced polyoxovanadate-alkoxide clusters
    Schreiber, E.; Petel, B. E.; Matson, E. M.*
    J. Am. Chem. Soc., 2020, 142, 9915-9919. DOI: 10.1021/jacs.0c03864
    Acid-induced, oxygen-atom vacancy formation in reduced polyoxovanadate-alkoxide clusters
  50. Synthetic insights into the site-selective halogenation of mixed-valent polyoxovanadate-alkoxide clusters
    Maiola, M. L.#; Petel, B. E.; Brennessel, W. W.; Matson, E. M.*
    Dalton Trans., 2020, 49, 16184-16192 (Invited Article: Dalton Transactions New Talents: Americas). DOI: 10.1039/D0DT01077D
    Synthetic insights into the site-selective halogenation of mixed-valent polyoxovanadate-alkoxide clusters
  51. Electrochemical consequences of ligand substitution at heterometal centers in polyoxovanadium clusters: Controlling the redox properties via heterometal coordination number
    Meyer, R. L.; Anjass, M. H.*; Petel, B. E.; Brennessel, W. W.; Streb, C.*; Matson, E. M.*
    Chem. Eur. J., 2020, 44, 9905-9914. DOI: 10.1002/chem.2019/05624
    Electrochemical consequences of ligand substitution at heterometal centers in polyoxovanadium clusters: Controlling the redox properties via heterometal coordination number
  52. Site-selective halogenation of polyoxovanadate clusters: Atomically precise models for electronic effects of anion doping in VO2 with relevance to smart window applications
    Petel, B. E.‡; Meyer, R. L.‡; Maiola, M. L.; Brennessel, W. W.; Müller, A. M.*; Matson, E. M.*
    J. Am. Chem. Soc., 2020, 143, 1049-1056. DOI: 10.1021/jacs.9b11874
    Site-selective halogenation of polyoxovanadate clusters: Atomically precise models for electronic effects of anion doping in VO<sub>2</sub> with relevance to smart window applications
  53. Conversion of NOx1- (x = 2, 3) to NO using an oxygen-deficient polyoxovanadate-alkoxide cluster
    Petel, B. E.; Matson, E. M.*
    Chem. Commun., 2020, 56, 555-558. DOI: 10.1039/C9CC08230A
    Conversion of NO<sub>x</sub><sup>1-</sup> (x = 2, 3) to NO using an oxygen-deficient polyoxovanadate-alkoxide cluster
  54. Cation interactions with molecular vanadium oxide clusters: Observations of capacitive and pseudocapacitive behavior within a single complex
    Schreiber, E.‡; Hartley, N. A.‡; Cook, T. R.; McKone, J. P.*; Matson, E. M.*
    ACS Appl. Energ. Mat., 2019, 2, 8985-8993. DOI: 10.1021/acsaem.9b02239
    Cation interactions with molecular vanadium oxide clusters: Observations of capacitive and pseudocapacitive behavior within a single complex
  55. Surface functionalization of polyoxovanadium clusters: Generation of highly soluble charge carriers for nonaqueous energy storage
    VanGelder, L. E.; Pratt III, H. D.; Anderson, T. M.; Matson, E. M.*
    Chem. Commun., 2019, 55, 12247-12250. DOI: 10.1039/C9CC05380H
    Surface functionalization of polyoxovanadium clusters: Generation of highly soluble charge carriers for nonaqueous energy storage
  56. Investigation of cubic Fe4M4 frameworks for application in nonaqueous electrochemical energy storage
    VanGelder, L. E.; Schreiber, E.; Wind, M.-L.; Brennessel, W. W.; Limberg, C.; Matson, E. M.*
    Chem. Eur. J., 2019, 25, 14421-14430. DOI: 10.1002/chem201903360
    Investigation of cubic Fe<sub>4</sub>M<sub>4</sub> frameworks for application in nonaqueous electrochemical energy storage
  57. Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy generation with tertiary phosphines and deoxygenation of styrene oxide
    Petel, B. E.; Meyer, R. L.; Brennessel, W. W.; Matson, E. M.*
    Chem. Sci., 2019, 10, 8035-8045. DOI: 10.1039/C9SC02882J
    Oxygen atom transfer with organofunctionalized polyoxovanadium clusters: O-atom vacancy generation with tertiary phosphines and deoxygenation of styrene oxide
  58. Ligand Derivatization of Titanium-functionalized Polyoxovanadium-alkoxide Clusters
    VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Polyhedron, 2019, 167, 119-126 (Invited Article: Women with MOxy: Metal Oxide Chemistry from Female Investigators). DOI: 10.1016/j.poly.2019.04.022
    Ligand Derivatization of Titanium-functionalized Polyoxovanadium-alkoxide Clusters
  59. Controlling Metal-to-Oxygen Ratios via M=O Bond Cleavage in Polyoxovanadate Alkoxide Clusters
    Petel, B.E.; Fertig, A.A.; Maiola, M.L.; Brennessel, W.W.; Matson, E.M.*
    Inorg. Chem., 2019, 58, 10462-10471 (Invited Forum Article: Celebrating the Year of the Periodic Table: Emerging Investigators in Inorganic Chemistry Issue). DOI: 10.1021/acs.inorgchem.9b00389
    Controlling Metal-to-Oxygen Ratios via M=O Bond Cleavage in Polyoxovanadate Alkoxide Clusters
  60. Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
    Schurr, B. E.; Nachtigall, O.; VanGelder, L.E.; Drappeau, J.; Brennessel, W.W.; Matson, E.M.*
    J. Coord. Chem., 2019, 72, 1267-1286 (Invited Article: Emerging Leader Issue). DOI: 10.1080/00958972.2019.1595605
    Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
  61. Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
    VanGelder, L.E.; Cook, T.R.; Matson, E.M.*
    Comment Inorg. Chem., 2019, 39, 51-89. DOI: 10.1080/02603594.2019.1587612
    Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
  62. Physicochemical implications of alkoxide "mixing" in polyoxovanadium clusters for nonaqueous energy storage
    VanGelder, L.E.; Schreiber, E.; Matson, E.M.*
    J. Mat. Chem. A, 2019, 7, 4893-4902. DOI: 10.1039/C8TA12306C
    Physicochemical implications of alkoxide "mixing" in polyoxovanadium clusters for nonaqueous energy storage
  63. Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters
    Kosswattaarachchi, A.M.; VanGelder, L.E.; Nachtigall, O.; Hazelnis, J.P.; Brennessel, W.W.; Matson, E.M.*; Cook, T.R.
    J. Electrochem. Soc., 2019, 166(4), A464-472. DOI: 10.1149/2.1351902jes
    Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters
  64. Organic functionalization of polyoxovanadate-alkoxide clusters: Improving the solubility of multi metallic charge carriers for nonaqueous redox flow batteries
    VanGelder, L.E.; Petel, B.E.; Nachtigall, O.; Martinez, G.; Brennessel, W.W.; Matson, E.M.*
    ChemSusChem, 2018, 13, 4139-4149. DOI: 10.1002/cssc.201802029
    Organic functionalization of polyoxovanadate-alkoxide clusters: Improving the solubility of multi metallic charge carriers for nonaqueous redox flow batteries
  65. Synthesis of a gallium-functionalized polyoxovanadate-alkoxide cluster: Toward a general route for heterometal installation
    Meyer, R.M.; Brennessel, W.W.; Matson, E.M.*
    Polyhedron, 2018, 156, 303-311. DOI: 10.1016/j.poly.2018.09.024
    Synthesis of a gallium-functionalized polyoxovanadate-alkoxide cluster: Toward a general route for heterometal installation
  66. Nitric oxide activation facilitated by the cooperative multimetallic reactivity of iron-functionalized polyoxovanadate-alkoxide clusters
    Li, F.; Meyer, R.; Carpenter, S.H.; VanGelder, L.E.; Nichols, A.W.; Machan, C.W.; Neidig, M.L.; Matson, E.M.*
    Chem. Sci., 2018, 9, 6379-6389. DOI: 10.1039/C8SC00987B
    Nitric oxide activation facilitated by the cooperative multimetallic reactivity of iron-functionalized polyoxovanadate-alkoxide clusters
  67. Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries
    VanGelder, L.E.; Matson, E.M.*
    J. Mat. Chem. A, 2018, 6, 13874-13882. DOI: 10.1039/C8TA03312A
    Heterometal functionalization yields improved energy density for charge carriers in nonaqueous redox flow batteries
  68. Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides
    Petel, B.E.; Brennessel, W.W.; Matson, E.M.*
    J. Am. Chem. Soc., 2018, 140, 8424-8428. DOI: 10.1021/jacs.8b05298
    Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides
  69. Manganese-Catalyzed Kumada Cross-Coupling Reactions of Aliphatic Grignard Reagents with N-Heterocyclic Chlorides
    Petel, B.E.; Purak, M.; Matson, E.M.*
    Synlett, 2018, 29, 1700-1706. DOI: 10.1055/s-0037-1610200
    Manganese-Catalyzed Kumada Cross-Coupling Reactions of Aliphatic Grignard Reagents with N-Heterocyclic Chlorides
  70. Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate–alkoxide clusters
    VanGelder, L.E.; Forrestel, P.L.; Brennessel, W.W.; Matson, E.M.*
    Chem. Commun., 2018, 54, 6839-6842 (Invited Article: Emerging Investigators Issue). DOI: 10.1039/C8CC01517A
    Site-selectivity in the halogenation of titanium-functionalized polyoxovanadate–alkoxide clusters
  71. Polyoxovanadate-alkoxide Clusters as Multi-electron Charge Carriers for Symmetric Non-aqueous Redox Flow Batteries
    VanGelder, L.E.; Kosswattaarachchi, A.M.; Forrestel, P.L.; Cook, T.R.*; Matson, E.M.*
    Chem. Sci., 2018, 9, 1692-1699. DOI: 10.1039/C7SC05295B
    Polyoxovanadate-alkoxide Clusters as Multi-electron Charge Carriers for Symmetric Non-aqueous Redox Flow Batteries
  72. Tuning the Redox Profiles of Polyoxovanadate-alkoxide clusters via Heterometal Installation: Toward Designer Redox Reagents
    VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Dalton Trans., 2018, 47, 3698-3704 (Cover Article). DOI: 10.1039/C7DT04455K
    Tuning the Redox Profiles of Polyoxovanadate-alkoxide clusters via Heterometal Installation: Toward Designer Redox Reagents
  73. Polyoxovanadate – Alkoxide Clusters as a Redox Reservoir for Iron
    Li, F.; Carpenter, S.H.; Higgins, R.F.; Hitt, M.G.; Brennessel, W.W.; Ferrier, M.G.; Cary, S.K.; Lezama-Pacheco, J.S.; Wright, J.T.; Stein, B.W.; Shores, M.P.; Neidig, M.L.; Kozimor, S.A.; Matson, E.M.*
    Inorg. Chem., 2017, 56, 7065-7080. DOI: inorgchem.7b00650
    Polyoxovanadate – Alkoxide Clusters as a Redox Reservoir for Iron
  74. Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters
    Li, F.; VanGelder, L.E.; Brennessel, W.W.; Matson, E.M.*
    Inorg. Chem., 2016, 55, 7332-7334. DOI: inorgchem.6b01349
    Self-Assembled, Iron-Functionalized Polyoxovanadate Alkoxide Clusters

Prior to University of Rochester

  1. Low- and mid-valent uranium species supported by phenyltris(oxazolinyl)borate ligands
    Gordon, Z.; Matson, E.M.: Burgess, M.; Miller, T.; Drummond, M.; Lord, R.; Popescu, C.; Rodriguez-Lopez, J.; Fout, A.R.*
    Organometallics, 2020, 39, 353-360. DOI: 10.1021/acs.organomet.9b00793
  2. Characterization of Terminal Iron(III)-oxo and Iron(III)-hydroxo Complexes Derived from O2 Activation
    Gordon, Z.; Matson, E.M.: Burgess, M.; Miller, T.; Drummond, M.; Lord, R.; Popescu, C.; Rodriguez-Lopez, J.; Fout, A.R.*
    Inorg. Chem., 2019, 23, 15801-15811. DOI: 10.1021/acs.inorgchem.9b02079
  3. Synthesis and Characterization of (DIPPCCC)Fe Complexes: A Zwitterionic Metalation Method and CO2 Reactivity
    Jackson, B. J.; Najera, D.; Matson, E. M.; Woods, T.; Bertke, J. A.; Fout, A.R.*
    Organometallics, 2019, 38, 2943-2952. DOI: 10.1021/acs.organomet.9b00271
  4. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications
    Ford, C.L.; Park, Y.-J; Matson, E.M.; Gordon, Z.; Fout, A.R.*
    Inorg. Chem., 2017, 56, 4852-4863. DOI: 10.1021/acs.inorgchem.6b03071
  5. A Bio-inspired Iron Catalyst for Nitrate and Perchlorate Reduction
    Gordon, Z.G.; Drummond, M.J.; Matson, E.M.; Bogart, J.A.; Schelter, E.J.; Lord, R.L.; Fout, A.R.*
    Science, 2016, 354, 741-743. DOI: 10.1126/science.aah6886
  6. Expanding the Family of Uranium(III) Alkyls: Synthesis and Characterization of Mixed Ligand Derivatives
    Matson, E.M.; Kiernicki, J.J.; Fanwick, P.E.; Bart, S.C.*
    Eur. J. Inorg. Chem., 2016, 15-16, 2527-2533. DOI: 10.1002/ejic.201501251
  7. Monoanionic Bis(Carbene) Pincer Complexes Featuring Cobalt(I-III) Oxidation States
    Ibrahim, A.D.; Tokmic, K.; Brennan, M.R.; Kim, D.; Matson, E.M.; Nilges, M.J.; Bertke, J.A.; Fout, A.R.*
    Dalton Trans., 2016, 45, 9805-9811. DOI: 10.1039/C5DT04723D
  8. Synthesis and Characterization of Thermochromic Metal Complexes with a Near Room Temperature High-Spin to Low-Spin Crossover
    Konkol, A.J.; Richad A.J.; Matson, E.M.; Caradonna, J.P.; O’Donnell, J.L.; Karr, J.W.
    Chem. Educator, 2015, 20, 229-233. DOI: 10.1333/s00897152649a
  9. Synthesis and characterization of M(II) (M = Mn, Fe, Co) azafulvene complexes and their X3- derivatives
    Matson, E.M.; Park, Y.J.; Bertke, J.A.; Fout, A.R.*
    Dalton Trans., 2015, 44, 10377-10384. DOI: 10.1039/C5DT00985E
  10. Nickel(II) Pincer Complexes: Oxidative addition of C-H Bond to form Ni(II)-H
    Matson, E. M.; Espinoza Martinez, G.; Ibrahim, A.; Jackson, B.J.; Bertke, J.A.; Fout, A.R.*
    Organometallics, 2015, 34, 399-407 (Cover Article). DOI: 10.1021/om5007177
  11. Exploring Mn-O bonding in the Context of an Electronically Flexible 2 Coordination Sphere: Synthesis of a Mn(III)-Oxo
    Park, Y.J.; Matson, E.M.; Nilges, M.J.; Fout, A.R.*
    Chem. Commun., 2015, 51, 5310-5313 (δAuthors contributed equally, Invited Article: Young Investigator Issue). DOI: 10.1039/C4CC08603A
  12. Facile Nitrite Reduction in a Non-heme Iron System: Formation of an Iron(III)-Oxo
    Matson, E.M.; Park, Y.J., Fout, A.R.*
    J. Am. Chem. Soc., 2014, 136, 17398-17401. DOI: 10.1021/ja510615p
  13. Trivalent Uranium Phenylchalcogenide Complexes: Exploring the Bonding and Reactivity with CS2 in the Tp*2UEPh Series (E = O, S, Se, Te)
    Matson, E. M.; Breshears, A. T.; Newell, B.S.; Fanwick, P.E.; Shores, M.P.*; Walensky, J.*; Bart, S.C.*
    Inorg. Chem., 2014, 53, 12977-12985. DOI: 10.1021/ic5020658
  14. Isolation of a Uranium(III) Benzophenone Ketyl Radical that Displays Redox-Active Ligand Behaviour
    Matson, E.M.; Kiernicki, J.J.; Anderson, N.H.; Fanwick, P.E.; Bart, S.C.*
    Dalton Trans., 2014, 43, 17885-17888. DOI: 10.1039/c4dt01636j
  15. Meridional vs. Facial Coordination Geometries of a Dipodal Ligand Framework Featuring a Secondary Coordination Sphere
    Matson, E. M.; Gordon, Z.; Fout, A. R.*
    Dalton Trans., 2014, 43, 16992-16995. DOI: 10.1039/c4dt02327g
  16. Isolation of Iron(II) Aqua and Hydroxo Complexes Featuring a Tripodal Hydrogen-Bond Donor and Acceptor Ligand
    Matson, E.M., Bertke, J. A.; Fout, A.R.*
    Inorg. Chem., 2014, 53, 4450-4458. DOI: 10.1021/ic500102c
  17. Multi-Electron C-O Bond Activation Mediated by a Family of Reduced Uranium Complexes
    Kiernicki, J.J.; Newell, B.S.; Matson, E.M.; Fanwick, P.E.; Shores, M.P.; Bart, S.C.*
    Inorg. Chem., 2014, 53, 3730-3741. DOI: 10.1021/ic500012x
  18. Radical Reductive Elimination from Tetrabenzyluranium Mediated by an Iminoquinone Ligand
    Matson, E.M.; Franke, S.; Anderson, N.A.; Cook, T.D.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2014, 33, 1964-1971. DOI: 10.1021/om4012104
  19. Tris(phosphinoamide)-supported Uranium-Cobalt Heterobimetallic Complexes Featuring Co-U Dative Interactions
    Napoline, J.W.; Kraft, S.J.; Matson, E.M.; Fanwick, P.E.; Bart, S.C.*; Thomas, C.M.*
    Inorg. Chem., 2013, 52, 12170-12177. DOI: 10.1021/ic402343q
  20. Synthesis of Terminal Uranium(IV) Disulfido and Diselenido Compounds by Activation of Elemental Sulfur and Selenium
    Matson, E.M.; Goshert, M.D.; Kiernicki, J.J.; Newell, B.S.; Fanwick, P.E.; Shores, M.P.*; Walensky, J.*; Bart, S.C.*
    Chem. Eur. J., 2013, 19, 16176-16180. DOI: 10.1002/chem.201303095
  21. "Oxidative Addition" of Halogens to U(IV) Bis(Amidophenolate) Complexes
    Matson, E.M.; Opperwall, S.R.; Fanwick, P.E.; Bart, S.C.*
    Inorg. Chem., 2013, 52, 7295-7304. DOI: 10.1021/ic4009812
  22. Synthesis and Reactivity of Trivalent Tp*U(CH2Ph)2(THF): Insertion vs Oxidation at Low-Valent Uranium
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2013, 32, 1484-1492 (Invited Article: Recent Advances in f-Element Organometallic Chemistry). DOI: 10.1021/om301139h
  23. Diazoalkane Reduction for the Synthesis of Uranium Hydrazonido Complexes
    Matson, E.M.; Fanwick, P.E.; Bart, S.C.*
    Eur. J. Inorg. Chem., 2012, 33, 5471-5478 (Cover Article). DOI: 10.1002/ejic.201200606
  24. Use of Alkylsodium Reagents for the Synthesis of Trivalent Uranium Alkyl Complexes
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2012, 31, 4467-4473. DOI: 10.1021/om3002763
  25. Synthesis of U(IV) Imidos from Tp*2UCH2Ph by Extrusion of Bibenzyl
    Matson, E.M.; Crestani, M.G.; Fanwick, P.E.; Bart, S.C.*
    Dalton Trans., 2012, 41, 7952-7958 (Invited Article: New Talent Americas). DOI: 10.1039/c2dt12439d
  26. Formation of Trivalent U-C, U-N, and U-S Bonds and their Reactivity Towards Carbonyls
    Matson, E.M.; Fanwick, P.E.; Bart, S.C.*
    Organometallics, 2011, 30, 5753-5762. DOI: 10.1021/om200612h
  27. Functionalization of Carbon Dioxide and Carbon Disulfide Using a Uranium(III) Alkyl Complex
    Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C.*
    J. Am. Chem. Soc., 2011, 133, 4948-4954. DOI: 10.1021/ja110158s